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Abstract
Classical r-matrices of the three-dimensional real Lie bialgebras are obtained.
In this way, all three-dimensional real coboundary Lie bialgebras and their
types (triangular, quasitriangular or factorizable) are classified. Then, by using
the Sklyanin bracket, the Poisson structures on the related Poisson–Lie groups
are obtained.

PACS number: 02.20.Sv

1. Introduction

As is well known by now, the theory of classical integrable systems is naturally related to
the geometry and representation theory of Poisson–Lie groups and the corresponding Lie
bialgebras [1] and their classical r-matrices [2] (see, for example, [3, 4]). Of course, recently
Lie bialgebras and their Poisson–Lie groups have application in the theory of Poisson–Lie
T-dual sigma models [5]. Up to now there is a detailed classification of r-matrices only for
the complex semisimple Lie algebras [6]. On the other hand, recently non-semisimple Lie
algebras have an important role in physical problems. Of course, there are attempts at the
classification of low-dimensional Lie bialgebras [7–11]. In [7], the classification of complex
three-dimensional Manin pairs related to the complex three-dimensional Lie algebras has been
performed and in this way by use of the connection between Manin triples and the N = 2
superconformal field theory [13], all N = 2 structures with c = 9 have been classified. In
[9, 10], by use of mixed Jacobi identity for bialgebras the authors obtain all three-dimensional
Lie bialgebras. Classification of the complex and real three-dimensional Lie bialgebras has
been performed in [11] on the same footing by using extensively the notion of twisting due to
Drinfeld [1]. In this manner, three-dimensional real coboundary Lie bialgebras are obtained.
In [11], the classification of three-dimensional Lie algebras of [12] was applied. On the other
hand, in physical models, the Bianchi classification of three-dimensional Lie algebras [16] are
applied. In [9, 10] and other applications of them [14], this classification has been applied. On
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the other hand, in [9, 10], the type of Lie bialgebras (coboundary or not) was not recognized. In
this paper, we perform this and classify all three-dimensional real coboundary Lie bialgebras
and determine their types (triangular or quasitriangular). Furthermore, we calculate Poisson
structures on the corresponding Poisson–Lie groups. In this way, one is ready to perform the
quantization of these Lie bialgebras.

The paper is organized as follows. In section 2, we recall some basic definitions and
propositions, then review how to obtain the three-dimensional real Lie bialgebras [9, 10].
By calculating and use of automorphism groups of Bianchi algebras, we show that these Lie
bialgebras are non-isomorphic. In section 3, we determine types of 44 Lie bialgebras, i.e., are
these coboundary (triangular or quasitriangular) or not? We list coboundary Lie bialgebras in
tables 3 and 4. We list coboundary Lie bialgebras with coboundary duals separately in table 4.
At the end of this section, we show that these coboundary Lie bialgebras are non-isomorphic.
Finally, in section 4 we calculate Poisson structures on the Poisson–Lie groups by using the
Sklyanin bracket.

2. Three-dimensional real Lie bialgebras

Let us recall some basic definitions and propositions [1, 3, 4]. Let g be a finite-dimensional
Lie algebra and g∗ be its dual space with respect to a non-degenerate canonical pairing ( , ) on
g∗ × g.

Defintion. A Lie bialgebra structure on a Lie algebra g is a skew-symmetric linear map
δ : g −→ g ⊗ g (the cocommutator) such that

(a) δ is a one-cocycle, i.e.,

δ([X, Y ]) = [δ(X), 1 ⊗ Y + Y ⊗ 1] + [1 ⊗ X + X ⊗ 1, δ(Y )] ∀X, Y ∈ g. (1)

(b) The dual map δt : g∗ ⊗ g∗ → g∗ is a Lie bracket on g∗:

(ξ ⊗ η, δ(X)) = (δt (ξ ⊗ η),X) = ([ξ, η]∗, X) ∀X ∈ g; ξ, η ∈ g∗. (2)

The Lie bialgebra defined in this way will be denoted by (g, g∗) or (g, δ). Note that the notation
(g, g∗) is less precise since as we will see there might be several nonequivalent one-cocycles
on g giving isomorphic Lie algebra structures to g∗; however, because of consistency and
application of the results of [9, 10] we will consider the notions (g, g∗).

Proposition. One-cocycles δ and δ′ of the algebra g are said to be equivalent if there exists
an automorphism O of g such that

δ′ = (O ⊗ O) ◦ δ ◦ O−1. (3)

In this case two Lie bialgebras (g, δ) and (g, δ′) are equivalent [3, 4].

Definition. A Lie bialgebra is called coboundary Lie bialgebra if the cocommutator is a
one-coboundary, i.e., if there exist an element r ∈ g ⊗ g such that

δ(X) = [1 ⊗ X + X ⊗ 1, r] ∀X ∈ g. (4)

Proposition. Two coboundary Lie bialgebras (g, g∗) and (g′, g∗′) defined by r ∈ g ⊗ g and
r ′ ∈ g′ ⊗ g′ are isomorphic if and only if there is an isomorphism of Lie algebras α : g −→ g′

such that (α ⊗ α)r − r ′ is g′ invariant, i.e.,

[1 ⊗ X + X ⊗ 1, (α ⊗ α)r − r ′] = 0 ∀X ∈ g′. (5)
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Definition. Coboundary Lie bialgebras can be of two different types:
(a) If r is a skew-symmetric solution of the classical Yang–Baxter equation (CYBE)

[[r, r]] = 0, (6)

then the couboundary Lie bialgebra is said to be triangular; where in the above equation the
Schouten bracket is defined by

[[r, r]] = [r12, r13] + [r12, r23] + [r13, r23], (7)

and if we denote r = rijXi ⊗ Xj , then r12 = rijXi ⊗ Xj ⊗ 1, r13 = rijXi ⊗ 1 ⊗ Xj and
r23 = rij 1 ⊗ Xi ⊗ Xj . A solution of the CYBE is often called a classical r-matrix.

(b) If r is a solution of CYBE, such that r12 + r21 is a g invariant element of g ⊗ g; then
the coboundary Lie bialgebra is said to be quasitriangular. If, moreover, the symmetric part
of r is invertible, then r is called factorizable.

Sometimes condition (b) can be replaced with the following one [1, 3]:
(b′) If r is a skew-symmetric solution of the modified CYBE:

[[r, r]] = ω ω ∈ ∧3g, (8)

then the coboundary Lie bialgebra is said to be quasitriangular.

Note that if g is a Lie bialgebra then g∗ is also a Lie bialgebra [3] but this is not always
true for the coboundary property.

Definition. Suppose that g is a coboundary Lie bialgebra with one-coboundary (4); and
furthermore suppose that g∗ is also a coboundary Lie bialgebra with the one-coboundary:

∀ξ ∈ g∗ ∃r∗ ∈ g∗ ⊗ g∗ δ∗(ξ) = [1 ⊗ ξ + ξ ⊗ 1, r∗]∗, (9)

where δ∗ : g∗ −→ g∗ ⊗ g∗. Then the pair (g, g∗) is called a bi- r-matrix bialgebra [15] if the
Lie bracket [ , ]′ on g defined by δ∗t

(δ∗(ξ),X ⊗ Y ) = (ξ, δ∗t
(X ⊗ Y )) = (ξ, [X, Y ]′) ∀X, Y ∈ g, ξ ∈ g∗, (10)

is equivalent to the original ones [15]

[X, Y ]′ = S−1[SX, SY ] ∀X, Y ∈ g, S ∈ Aut(g). (11)

Definition. A Manin triple is a triple of Lie algebras (D, g, g̃) together with a non-degenerate
ad-invariant symmetric bilinear from 〈,〉 on D such that

(a) g and g̃ are Lie subalgebras of D,
(b) D = g ⊗ g̃ as a vector space,
(c) g and g̃ are isotropic with respect to 〈,〉, i.e.,

〈Xi,Xj 〉 = 〈X̃i, X̃j 〉 = 0, 〈Xi, X̃
j 〉 = δi

j , (12)

where {Xi} and {X̃i} are the bases of the Lie algebras g and g̃, respectively. There is a one-
to-one correspondence between Lie bialgebra (g, g�) and Manin triple (D, g, g̃) with g̃ = g�

[3, 4]. If we choose the structure constants of algebra g and g̃ as follows:

[Xi,Xj ] = fij
kXk, [X̃i, X̃j ] = f̃

ij

kX̃
k, (13)

then ad-invariance of the bilinear form 〈 , 〉 on D = g ⊗ g̃ implies that [3]

[Xi, X̃
j ] = f̃ jk

iXk + fki
j X̃k. (14)

Clearly by using equations (12), (13) and (2), we have

δ(Xi) = f̃ jk
iXj ⊗ Xk. (15)
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Table 1. Bianchi classification of three-dimensional Lie algebras.

Type a n1 n2 n3

I 0 0 0 0
II 0 1 0 0
V II0 0 1 1 0
V I0 0 1 −1 0
IX 0 1 1 1
V III 0 1 1 −1
V 1 0 0 0
IV 1 0 0 1
V IIa a 0 1 1

III (a = 1)

V Ia (a �= 1)

}
a 0 1 −1

By applying this relation in the one-cocycle condition (1) one can obtain the following
relation1:

fmk
i f̃ jm

l − fml
i f̃ jm

k − fmk
j f̃ im

l + fml
j f̃ im

k = fkl
mf̃ ij

m. (16)

In some literature, the above relation is used to the definition of Lie bialgebras.

Now by reviewing these definitions and propositions we are ready to review the works
about three-dimensional real Lie bialgebras. In fact, in [9] we had applied the above relations
for obtaining 28 real three-dimensional Bianchi bialgebras (Lie bialgebras where its duals are
of Bianchi type). In doing so, we had considered the Behr’s classification of three-dimensional
Bianchi Lie algebras [16] as follows:

[X1, X2] = −aX2 + n3X3, [X2, X3] = n1X1,

[X3, X1] = n2X2 + aX3, (17)

where the structure constants are given in table 1.
Then by considering the dual Lie algebra in form (17) and using relation (16) we had

obtained all Bianchi bialgebras. In [10], Hlavaty and Snobl, by considering dual algebras
which are isomorphic to Bianchi algebras g̃, have obtained (complete list) 44 real three-
dimensional Lie bialgebras. These isomorphism must be such that the ad-invariant metric (12)
remains invariant under this transformations, i.e.,

X̃′j = Aj
kX̃

k, X′
i = Xk(A

−1)ki . (18)

Their list of 44 Lie bialgebras contain 19 Lie bialgebras of our list in [9], with the
names (g, I ), (V IIa, II ) = (V IIa, II.i), (V II0, V ) = (V II0, V .i), (V Ia, II ), (V I0, I I ),

(V I0, V ) = (V I0, V .i), (V , II ) = (V , II.i), (IV, II ) = (IV, II.i) and (III, II ). Note
that these 44 Lie bialgebras are non-isomorphic. For the 28 Lie bialgebras that we have
previously obtained, it is trivial. For the other pair of Lie bialgebras such as (g, g̃) and
(g, g̃′) where g̃ ∼= g̃′, as we have previously mentioned for investigation of the Lie bialgebra
isomorphism, we must examine if relation (3) holds or not. By using (15), we can rewritten
relation (3) as follows:

Oj
iỸ ′

i = Ot ỸjO, (19)

1 The above relation can also be obtained from mixed Jacobi identity for (14).
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Table 2. Automorphism groups of the Bianchi algebras.

g Automorphism group

I GL(3, R)

II

(
detA 0

v A

)
where A ∈ GL(2, �), v ∈ �2

V II0


−c d 0

d c 0
vt 1


 c, d ∈ � where c or d �= 0 and v ∈ �2

V I0


 c −d 0

d −c 0
vt 1


 c, d ∈ � where c or d �= 0 and v ∈ �2

IX SO(3)

V III SL(2, R)

III, V Ia


1 vt

0 c d

0 d c


 c, d ∈ � where c or d �= 0 and v ∈ �2

V


1 vt

0
0 A


 where A ∈ GL(2, R) and v ∈ �2

IV


1 vt

0 c d

0 0 c


 c, d ∈ � where c �= 0 and v ∈ �2

V IIa


1 vt

0 c d

0 −d c


 c, d ∈ � where c or d �= 0 and v ∈ �2

where (Ỹi )
jk = −f̃ jk

i ; (Ỹ ′
i )

jk = −f̃ ′jk
i and we apply the matrix representation of the

automorphism of the algebra g as follows:

O(Xi) = Oi
jXj . (20)

In this manner, for investigation of isomorphism of such Lie bialgebras, we must first obtain
the automorphism groups of Bianchi algebras.

The automorphism groups of the complex three-dimensional solvable Lie algebras were
found previously in [7]. Here, we find the automorphism groups of Bianchi algebras. These
are Lie subgroups of GL(3, R) which preserve the Lie brackets, i.e.2,

[Xi,Xj ] = fij
kXk, [X′

l , X
′
m] = flm

nX′
n, (21)

where by applying X′
j = Oj

iXi , we have

Oj
iOXi = XjO, (22)

or

YjOj
i = OY iOt , (23)

where (Xi )l
j = −fi l

j are the adjoint representations of the bases of algebra g and as we
mentioned above (Y i )jk = −fjk

i are the antisymmetric matrices. Now we must first find
the Xi or Y i matrices for all Lie bialgebras. In [9], we have obtained general formulae for
the matrices Xi and Y i . Now by knowing these matrices and applying relations (22) or (23)
one can calculate general form of the elements of the automorphism groups of the Bianchi
algebras. We have found and listed these in table 2:

2 Note that these are outer automorphism groups.
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Now by knowing these automorphism groups we can investigate isomorphism of the pairs
of Lie bialgebras of the form (g, g̃) and (g, g̃′) by using relations (19). Note that the matrices
X̃ i and Ỹi have the same form as Xi and Y i but we must replace the set (a, n1, n2, n3) with
(ã, ñ1, ñ2, ñ3).

These matrices can be applied for the 19 Lie bialgebras mentioned above. For the
remaining 25 Lie bialgebras one can obtain these matrices. Note that for these Lie bialgebras
the matrices Xi and Y i can be obtained from equations (15) of [9]; for this reason one can
obtain only the matrices X̃ i and Ỹi of these Lie bialgebras, for example, for Lie bialgebra
(IX, V |b) we have

X̃1 =

0 0 0

0 b 0
0 0 b


 , X̃2 =


0 −b 0

0 0 0
0 0 0


 , X̃3 =


0 0 −b

0 0 0
0 0 0


 ,

Ỹ1 =

0 0 0

0 0 0
0 0 0


 , Ỹ2 =


 0 b 0

−b 0 0
0 0 0


 , Ỹ3 =


 0 0 b

0 0 0
−b 0 0


 .

In this manner, we investigate the isomorphicity and find that relations (19) do not satisfy for
the pair of Lie bialgebras of the forms (g, g̃) and (g, g̃′) mentioned in [10]. For example, for
the Lie bialgebras (V III, V .i|b) and (V III, V .ii|b) relation (19) for j = 1 does not satisfy
and so on . . . . Now we are ready to determine how many of the 44 real three-dimensional Lie
bialgebras are coboundary.

3. Three-dimensional real coboundary Lie bialgebras

In this section, we determine how many of 44 Lie bialgebras are coboundary? Therefore, we
must find r = rijXi ⊗Xj ∈ g⊗g such that the cocommutator of Lie bialgebras can be written
as (4). By using (4), (13) and (15), we have

Ỹi = Xi
t r + rXi . (24)

Now by using (24) and form of X ,Y matrices we can find the r-matrix of the Lie
bialgebras. In this manner, we determine which of the Lie bialgebras are coboundary and
obtain r-matrices. Of course, we also perform this work for the dual Lie bialgebras (g̃, g) by
using the following equations in the same way as (24):

Y i = (X̃ i )t r̃ + r̃X̃ i , (25)

where as above (X̃ i )l
j = −f̃ ij

l are the adjoint representations of the bases of algebra g̃. The
results are summarized in tables 3 and 4. Note that we also determine the Schouten brackets
of the Lie bialgebras. In this manner, the type of Lie bialgebras (triangular or quasitriangular)
are specified and we classify all three-dimensional real coboundary Lie bialgebras. There are
two points in these tables. First, we have listed coboundary Lie bialgebras with coboundary
duals separately in table 4. Since such structures can be specified (up to automorphism) by
pairs of r-matrices, then it is natural to call them bi- r-matrix bialgebras (b-r-b) [15]3. In [15],
some examples of three-dimensional b-r-b have been given. Here, we give complete list of

3 The most interesting applications of b-r-b are possible in the theory of bi-Hamiltonian dynamical systems [17]. In
this case, the presence of pair of r-matrices allows us to define the pair of dynamical systems on the space which is
the space of original Lie algebras canonically identified with its dual space [2].
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Table 3. Three-dimensional coboundary Lie bialgebras.

(g, g̃) r [[r, r]]

(II, I ) cX1 ∧ X2 + dX1 ∧ X3 0
(V II0, I ) cX1 ∧ X2 0
(V II0, V .i) X2 ∧ X3 X1 ∧ X2 ∧ X3

(V I0, I ) cX1 ∧ X2 0
(V I0, V .i) X2 ∧ X3 X1 ∧ X2 ∧ X3

(IX, V |b) bX2 ∧ X3 b2X1 ∧ X2 ∧ X3

(V III, V .i|b) bX2 ∧ X3 b2X1 ∧ X2 ∧ X3

(V III, V .ii|b) −bX1 ∧ X2 −b2X1 ∧ X2 ∧ X3

(V III, V .iii) −X1 ∧ X2 − X2 ∧ X3 0
(IV , II.i) −X2 ∧ X3 0

(IV , II.ii) 1
2 X2 ∧ X3 0

(IV .ii, V I0)
1
2 (X1 ∧ X3 + X2 ∧ X3) 0

(V IIa, II.i) − 1
2a

X2 ∧ X3 0

(V IIa, II.ii) 1
2a

X2 ∧ X3 0

(III, II ) − 1
2 X2 ∧ X3 0

(V Ia, II ) − 1
2a

X2 ∧ X3 0

Table 4. Three-dimensional bi- r-matrix bialgebras.

g r [[r, r]] g̃ r̃ [[r̃ , r̃]]

II.i cX1 ∧ X2 + dX3 ∧ X1 + X2 ∧ X3 X1 ∧ X2 ∧ X3 V − 1
2 X2 ∧ X3 0

V I0 cX1 ∧ X2 − X2 ∧ X3 + X3 ∧ X1 0 V.ii 1
2 (X1 ∧ X3 + X2 ∧ X3) 0

III − 1
2 (X1 ∧ X2 + X3 ∧ X1) 0 III.ii X1 ∧ X2 + X3 ∧ X1 0

III − 1
2 (X1 ∧ X2 + X1 ∧ X3) 0 III.iii X1 ∧ X2 + X1 ∧ X3 0

V Ia − 1
a−1 (X1 ∧ X2 + X3 ∧ X1) 0 V I 1

a
.ii a−1

2 (X1 ∧ X2 + X3 ∧ X1) 0

V Ia − 1
a+1 (X1 ∧ X2 + X1 ∧ X3) 0 V I 1

a
.iii a+1

2 (X1 ∧ X2 + X1 ∧ X3) 0

three-dimensional b-r-b. Secondly, as is seen, we have considered skew-symmetric r-matrix
solutions in tables 3 and 4. Of course, there are other solutions for some Lie bialgebras of these
tables. We have listed these solutions in table 5. In this table Lie bialgebras (III, I ), (V Ia, I )

and (V III, V .i|b) are factorizable Lie bialgebras. Other Lie bialgebras of this table are
quasitriangular such as they having r-matrix solutions with invariant symmetric part, which
for the special case (c = d = e = 0) transform to triangular solutions of tables 3 and 4. Note
that in these tables, c, d and e are arbitrary nonzero constants.

Notice that these coboundary Lie bialgebras are non-isomorphic. In the previous section,
we mentioned to the conditions (relation (5)) under which the coboundary Lie bialgebras are
isomorphic. Here, we consider these conditions in a more exact way and not formal. By using
the matrix form of the isomorphism map α : g −→ g′, i.e.,

α(Xi) = αi
jX′

j , (26)

then relation (5) can be rewritten as

X ′
i
t
(αt rα − r ′) = (X ′

i
t
(αt rα − r ′))t , (27)

i.e., if the above matrices are symmetric then the two coboundary Lie bialgebras (g, g̃) and
(g′, g̃′) are isomorphic. Note that for some pair of Lie bialgebras the matrix α is the same
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Table 5. Three-dimensional coboundary Lie bialgebras (other solutions).

(g, g̃) r [[r, r]]

(III, II ) cX2
⊗

X2 − (c + 1
2 )X2

⊗
X3 − (c − 1

2 )X3
⊗

X2 + cX3
⊗

X3 0

(II, I ) eX1
⊗

X1 + cX1 ∧ X2 + dX1 ∧ X3 0

(III, I ) c(−X2
⊗

X2 + X2
⊗

X3 + X3
⊗

X2 − X3
⊗

X3) 0

(V Ia, I ) c(X2
⊗

X2 + X2
⊗

X3 + X3
⊗

X2 + X3
⊗

X3) 0

(V III, V .i|b) bX2 ∧ X3 ± b(X1
⊗

X1 + X2
⊗

X2 − X3
⊗

X3) 0

(V I0, V .ii) d(X1
⊗

X1 − X2
⊗

X2) + cX1 ∧ X2 − X2 ∧ X3 + X3 ∧ X1 0

(III, III.ii) c(X2
⊗

X2 − X2
⊗

X3 − X3
⊗

X2 + X3
⊗

X3) − 1
2 (X1 ∧ X2 + X3 ∧ X1) 0

(III.ii, I II ) cX1
⊗

X1 + X1 ∧ X2 + X3 ∧ X1 0

(III, III.iii) c(X2
⊗

X2 − X2
⊗

X3 − X3
⊗

X2 + X3
⊗

X3) − 1
2 (X1 ∧ X2 − X3 ∧ X1) 0

(III.iii, I II ) c(X2
⊗

X2 − X2
⊗

X3 − X3
⊗

X2 + X3
⊗

X3) + X1 ∧ X2 − X3 ∧ X1 0

as the matrix A which we have previously mentioned in (18) and for some other pairs it is
the combination of two A matrices. To find the matrices A one can use relation (18) and the
following ones:

[Xi,Xj ] = fij
kXk, [X′

l , X
′
m] = f ′

lm
n
X′

n. (28)

Then one finds the following equation for the matrix A:

AỸjA
t = Ỹ ′

iA
i
j , (29)

by using these relations one can find the A matrices. We perform this work and find A and
then α matrices for the pair of some Lie bialgebras, they are listed in the appendix. By using
these matrices, we have found that the matrices (27) are non-symmetric; in other words all
coboundary Lie bialgebras of tables 3 and 4 are non-isomorphic. For example, note that the
Lie bialgebras (V .ii, V I0) and (V , II.i); then by using (3) in the appendix for the matrix A
one can see that relation (27) does not satisfy.

Note that one cannot completely compare our results with the results of [11]. In [11], the
author has applied the classification of three-dimensional Lie algebras that are mentioned in
[12]. Hence, our results are not completely consistent with the results of [11]. For the algebra
SO(3) = IX our results are compatible with the results of [11], because these Lie algebras are
the same; but for other Lie algebras, because of isomorphicity of algebras with the Bianchi
ones, the results are not exactly the same as in [11].

Before beginning the next section let us discuss about the application of classical r-matrix
in the integrable systems. Indeed one can construct integrable systems over the vector space
g∗ related to the quasitriangular Lie bialgebras (g, g̃). One can perform this by using the
following proposition [3]:

Proposition. Let H be a smooth function on g∗ which is invariant under coadjoint action of
G (Lie group of g) and let r ∈ g ⊗ g be a skew-symmetric solution of the modified CYBE.
Then, the Hamiltonian system on g∗ with Poisson bracket { , }r and Hamiltonian H admits a
Lax pair (L, P ). Moreover,

{L,L}r = [r, L ⊗ 1 + 1 ⊗ L] (30)

where { , }r is the Poisson structure related to the following Lie bracket over g:

[X, Y ]r = [ρ(X), Y ] + [X, ρ(Y )] (31)
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where ρ : g → g is a linear map such that

ρ(Xi) =
∑

j

rijXj (32)

L : g∗ → g is a canonical map with L(ξ) = (ξ ⊗1)(t) where t ∈ g⊗g is the Casimir element
and P(ξ) = ρ(dH(ξ)) ∀ξ ∈ g∗.

Now by using this proposition one can construct integrable systems related to the three-
dimensional quasitriangular Lie bialgebras. For example, one can see that integrable system
over the vector space V.i related to the Lie bialgebras (V III, V .i|b) is the Toda system with
potential exp 2bq.

4. Calculation of Poisson structures by Sklyanin bracket

We know that for the triangular and quasitriangular Lie bialgebras one can obtain their
corresponding Poisson–Lie groups by means of the Sklyanin bracket provided by a given
skew-symmetric r-matrix r = rijXi ∧ Xj [3]:

{f1, f2} =
∑
i,j

rij
((

XL
i f1

)(
XL

j f2
) − (

XR
i f1

)(
XR

j f2
)) ∀f1, f2 ∈ C∞(G) (33)

where XL
i and XR

i are left and right invariant vector fields on the three-dimensional related Lie
group G. In the case that r is a solution of (CYBE), the following brackets are also Poisson
structures on the group G:

{f1, f2}L =
∑
i,j

rij
((

XL
i f1

)(
XL

j f2
)

(34)

{f1, f2}R =
∑
i,j

rij
((

XR
i f1

)(
XR

j f2
)
. (35)

To calculate the left and right invariant vector fields on the group G it is enough to determine
the left and right forms. For g ∈ G we have

dgg−1 = RiXi (dgg−1)i = Ri = Ri
jdxj , (36)

g−1dg = LiXi (g−1dg)i = Li = Li
jdxj , (37)

where xi are parameters of the group spaces. Now from δj
i = 〈

XR
j , Ri

〉
and δj

i = 〈
XL

j , Li
〉

where XR
j = XR

j
l∂l and XL

j = XL
j
l∂l , we obtain

XR
j
l = (R−t )j

l, XL
j
l = (L−t )j

l . (38)

To calculate the above matrices, we assume the following parametrization of the group G:

g = ex1X1 ex2X2 ex3X3 . (39)

Then, in general, for left and right invariant Lie algebras valued one forms, we have

dgg−1 = dx1X1 + dx2 ex1X1X2 e−x1X1 + dx3 ex1X1(ex2X2X3 e−x2X2) e−x1X1 , (40)

g−1dg = dx1 e−x3X3(e−x2X2X1 ex2X2) ex3X3 + dx2 e−x3X3X2 ex3X3 + dx3X3. (41)

As it is seen in the above calculations we need to calculate expressions such as e−xiXi Xj exiXi .4

4 Note that repeated indices do not imply summation.
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Table 6. Left and right invariant vector fields over three-dimensional coboundary Bianchi groups.

g


XL

1
XL

2
XL

3





XR

1
XR

2
XR

3




II.i


 ∂1

−x3∂1 + ∂2

∂3





 ∂1

∂2

−x2∂1 + ∂3




V II0


 cos x3∂1 + sin x3∂2

−sin x3∂1 + cos x3∂2

∂3





 ∂1

∂2

−x2∂1 + x1∂2 + ∂3




V I0


 cosh x3∂1 − sinh x3∂2

−sinh x3∂1 + cosh x3∂2

∂3





 ∂1

∂2

−x2∂1 − x1∂2 + ∂3




IX




cos x3
cos x2

∂1 + sin x3∂2 − tan x2 cos x3∂3
−sin x3
cos x2

∂1 + cos x3∂2 + tan x2 sin x3∂3

∂3







∂1

tan x2 sin x1∂1 + cos x1∂2 − sin x1
cos x2

∂3

−tan x2 cos x1∂1 + sin x1∂2 + cos x1
cos x2

∂3




V III




cos x3
cos x2

∂1 + sin x3∂2 − tanh x2 cos x3∂3
sin x3

cosh x2
∂1 + cos x3∂2 + tanh x2 sin x3∂3

∂3







∂1

tanh x2 sin x1∂1 + cosh x1∂2 + sinh x1
cosh x2

∂3

−tanh x2 cosh x1∂1 + sinh x1∂2 + cosh x1
cosh x2

∂3




V


∂1 + x2∂2 + x3∂3

∂2

∂3





 ∂1

ex1 ∂2

ex1 ∂3




V.ii


 ex2 ∂1 + (1 − ex2 )∂2 + (ex2 (x3 − 1) − x3)∂3

∂2 − x3∂3

∂3





 ∂1

(1 − e−x1 )∂1 + e−x1 ∂2

e−x1−x2 ∂3




IV


∂1 + x2∂2 + (x3 − x2)∂3

∂2

∂3





 ∂1

ex1 ∂1 − x1 ex1 ∂2

ex1 ∂3




IV .ii


 ex2 ∂1 + (1 − ex2 )∂2 − (x2 + x3)∂3

∂2 − x3∂3

∂3





 ∂1

(1 − e−x1 )∂1 + e−x1 ∂2 − x1 e−x1 ∂3

e−x1 ∂3




V IIa


∂1 + (ax2 + x3)∂2 + (ax3 − x2)∂3

∂2

∂3





 ∂1

eax1 cos x1∂2 − eax1 sin x1∂3

eax1 sin x1∂2 + eax1 cos x1∂3




III


∂1 + (x2 + x3)(∂2 + ∂3)

∂2

∂3







∂1
1+e2x1

2 ∂2 + e2x1 −1
2 ∂3

e2x1 −1
2 ∂2 + 1+e2x1

2 ∂3




III.ii


 ∂1

e−x3 ∂2 + (e−x3 − 1)∂3

∂3





 ∂1

∂2

(e−x2 − 1)∂2 + e−x2 ∂3




III.iii


 e−x2−x3 ∂1

∂2

∂3





 ∂1

−x1∂1 + ∂2

−x1∂1 + ∂3




V Ia


∂1 + (ax2 + x3)(∂2 + ∂3)

∂2

∂3





 ∂1

eax1 (cosh x1∂2 + sinh x1∂3)

eax1 (sinh x1∂2 + cosh x1∂3)




V I 1
a
.ii


 ex3−x2 ∂1

e−αx3 ∂2 + (e−αx3 − 1)∂3

∂3





 ∂1

−x1∂1 + ∂2

x1∂1 + (e−αx2 − 1)∂2 + e−αx2 ∂3


 , α = a+1

a−1

V I 1
a
.iii




e−x2−x3 ∂1

e
1
α x3 ∂2 + (1 − e

1
α x3 )∂3

∂3







∂1

−x1∂1 + ∂2

−x1∂1 + (1 − e− 1
α x2 )∂2 + e− 1

α x2 ∂3


 , α = a+1

a−1
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Table 7. Poisson brackets related to the quasitriangular Lie bialgebras.

(g, g̃) {x1, x2} {x1, x3} {x2, x3}
(II.i, V ) −x2 −x3 0
(V II0, V .i) −x2 −sin x3 cos x3 − 1
(V I0, v.i) −x2 −sinh x3 cosh x3 − 1

(IX, V |b) −b tan x2 −b
sin x3
cos x2

b
(

cos x3 − 1
cos x2

)
(V III, V .i|b) −b tanh x2(2cosh2x1 − 1) b

sin x3−tanh x2 sinh 2x1
cosh x2

b
(

cos x3 − 1
cosh x2

)
(V III, V .ii|b) b

−cos 2x3+cosh x1 cosh x2
cosh x2

b
sinh x1−tanh x2 sin 2x3

cosh x2
−b tanh x2

Indeed in [9], we have shown that

e−xiXi Xj exiXi = (exiXi )j
kXk, (42)

where summation over index k is assumed.
For Bianchi algebras the form of matrices exiXi are obtained in [9]. For other Lie algebras

which are isomorphic to the Bianchi ones we must calculate these matrices directly from the
form of Xi . We have performed these calculations only for Lie algebras g of (g, g̃) coboundary
Lie bialgebras and then have obtained left and right invariant vector fields as given in
table 6.

Now by using these results we can calculate the Poisson structures over the group G. For
simplicity, we can rewrite relation (33) in the following matrix form:

{f1, f2} = (
XL

1 f1 XL
2 f1 XL

3 f1
)
r




XL
1 f2

XL
2 f2

XL
3 f2


 − (

XR
1 f1 XR

2 f1 XR
3 f1

)
r




XR
1 f2

XR
2 f2

XR
3 f2


 , (43)

and similarly we can rewrite (34) and (35).
In this manner, we calculate the fundamental Poisson brackets of all triangular and

quasitriangular Lie bialgebras. The results are given in tables 7 and 8. Note that for triangular
Lie bialgebras we have calculated all Poisson structures (33), (34) and (35) and have listed
them separately in table 8.

Now by knowing the Poisson structures of the Poisson–Lie groups one can construct
dynamical systems over the symplectic leaves of this Poisson–Lie groups as a phase space.
This can be done by using the dressing action of G∗ (Lie group of g∗) on G which is a Poisson
action whose orbits are exactly the symplectic leaves of G [3, 4].

5. Concluding remarks

As mentioned above, by determining the types (triangular or quasitriangular) and obtaining
r-matrices and Poisson–Lie structures of the real three-dimensional Lie bialgebras one can
construct integrable systems over the vector space g∗; meanwhile one is now ready to perform
the quantization of these Lie bialgebras. Furthermore, now one can obtain Poisson–Lie T-
dual sigma models over three-dimensional triangular Lie bialgebras [18]. Note that in [18]
only example su(2) was considered. On the other hand, one can investigate integrability
under Poisson–Lie T-duality by studying the Poisson–Lie T-dual sigma models over three-
dimensional bi-r-matrix bialgebras.
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Table 8. Poisson brackets related to some triangular Lie bialgebras.

(g, g̃) (II, I ) (V II0, I ) (V I0, I ) (V I0, V .ii) (V , II.i) (V .ii, V I0)

{x1, x2}L c c c c 0 0

{x1, x3}L c′ 0 0 sinh x3 − cosh x3 0 ex2
2

{x2, x3}L 0 0 0 sinh x3 − cosh x3 − 1
2 1 − ex2

2
{x1, x2}R c c c c − x2 − x1 0 0
{x1, x3}R c′ 0 0 −1 0 e−x1−x2 (1 − e−x1 )

{x2, x3}R 0 0 0 −1 − e2x1
2

e−2x1−x2
2

{x1, x2} 0 0 0 x2 + x1 0 0

{x1, x3} 0 0 0 sinh x3 − cosh x3 + 1 0 ex2
2 − e−x1−x2 (1 − e−x1 )

{x2, x3} 0 0 0 sinh x3 − cosh x3 + 1 e2x1 −1
2 1 − ex2 +e−2x1−x2

2

(g, g̃) (V III, V .iii) (IV , II.i) (IV , II.ii) (IV .ii, V I0)

{x1, x2}L − cos 2x3
cosh x2

0 0 0

{x1, x3}L − sin x3(2 tanh x2 cos x3+1)
cosh x2

0 0 ex2
2

{x2, x3}L −tanh x2 − cos x3 −1 1
2 1 − ex2

2
{x1, x2}R −cosh x1 − tanh x2 cosh 2x1 0 0 0

{x1, x3}R − sinh x1(2 tanh x2 cosh x1+1)
cosh x2

−e2x1 ex1
2

e−x1 (2−e−x1 )
2

{x2, x3}R − 1
cosh x2

x1 e2x1 − x1 e2x1

2
e−2x1

2

{x1, x2} − cos 2x3
cosh x2

+ cosh x1 + tanh x2 cosh 2x1 0 0 0

{x1, x3} − sin x3(2 tanh x2 cos x3+1)−sinh x1(2 tanh x2 cosh x1+1)
cosh x2

e2x1 − e2x1
2

ex2 +e−x1 (e−x1 −2)
2

{x2, x3} −tanh x2 − cos x3 + 1
cosh x2

−1 − x1 e2x1 1+x1e2x1

2 1 − ex2 +e−2x1
2

(g, g̃) (III, II ) (III, III.ii) (I II, III.iii) (I II.ii, I II ) (III.iii, I II )

{x1, x2}L 0 − 1
2 − 1

2 e−x3 e−x2−x3

{x1, x3}L 0 1
2 − 1

2 e−x3 − 2 e−x2−x3

{x2, x3}L − 1
2 x2 + x3 0 0 0

{x1, x2}R 0 − 1
2 − e2x1

2 2 − e−x2 1

{x1, x3}R 0 1
2 − e2x1

2 −e−x2 1

{x2, x3}R − e2x1
2 0 0 0 0

{x1, x2} 0 0 e2x1 −1
2 e−x2 + e−x3 − 2 e−x2−x3 − 1

{x1, x3} 0 0 e2x1 −1
2 e−x2 + e−x3 − 2 e−x2−x3 − 1

{x2, x3} e2x1 −1
2 x2 + x3 0 0 0

(g, g̃) (V Ia, II ) (V Ia, V I 1
a
.ii) (V Ia, V I 1

a
.iii) (V I 1

a
.ii, V Ia)

{x1, x2}L 0 − 1
a−1 − 1

a+1
a−1

2 e−x2+(1−α)x3

{x1, x3}L 0 1
a−1 − 1

a+1
a−1

2 ex3−x2 (e−αx3 − 2)

{x2, x3}L − 1
2a

α(x2 + x3)
x3−x2

α
0

{x1, x2}R 0 eax1 (sinh x1−cosh x1)
a−1 − e

x1
a (sinh x1+cosh x1)

a+1
a−1

2 (2 − e−αx2 )

{x1, x3}R 0 − eax1 (sinh x1−cosh x1)
a−1 − e

x1
a (sinh x1+cosh x1)

a+1 − a−1
2 e−αx2

{x2, x3}R − e2ax1
2a

0 0 0

{x1, x2} 0 − 1+eax1 (sinh x1−cosh x1)
a−1

−1+e
x1
α (sinh x1+cosh x1)

a+1
a−1

2 (e−x2+(1−α)x3 + e−αx2 − 2)

{x1, x3} 0 1+eax1 (sinh x1−cosh x1)
a−1

−1+e
x1
α (sinh x1+cosh x1)

a+1
a−1

2 (ex3−x2 (e−αx3 − 2) + e−αx2 )

{x2, x3} e2ax1 −1
2a

α(x2 + x3)
x3−x2

2 0
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(g, g̃) (V I 1
a
.iii, V Ia) (V IIa, II.i) (V IIa, II.ii)

{x1, x2}L a+1
2 e−x2− 2x3

a+1 0 0

{x1, x3}L a+1
2

(
e−x2−x3 − e−x2− 2x3

a+1

)
0 0

{x2, x3}L 0 − 1
2a

1
2a

{x1, x2}R a+1
2

(
2 − e− x2

α

)
0 0

{x1, x3}R a+1
2 e− x2

α 0 0

{x2, x3}R 0 − e2ax1
2a

e2ax1
2a

{x1, x2} a+1
2

(
e−x2− 2x3

a+1 + e
−x2
α − 2

)
0 0

{x1, x3} a+1
2

(
e−x2−x3 − e−x2− 2x3

a+1 + e
−x2
α

)
0 0

{x2, x3} 0 e2ax1 −1
2a

− e2ax1 −1
2a

Appendix

Here, we list α matrices which are applied in relations (27).

(1) For the pairs ((IV, II.i), (IV .ii, V I0)) and ((IV, II.ii), (IV .ii, IV0)):

α = A =

−1 0 0

−1 1 0
0 0 −1


 .

(2) For the pair (II, I ) and (II.i, V ):

α = A = I.

(3) For the pair (V , II.i) and (V .ii, V I0):

α = A =

0 0 1

0 1 0
b 0 0


 .

(4) For the pairs ((III, III.ii), (III.ii, I II )), ((III, III.iii), (III.ii, I II )) and
((III, II ), (III.ii, I II )):

α = A =




0 −c c

− 1
2 d d + e − f

1
2 e f


 ,

where c, d, e, f ∈ �.
(5) For the pairs ((III, III.iii), (III.iii, I II )), ((III, III.ii), (III.iii, I II )) and

((III, II ), (III.iii, I II )):

α = A =




0 c c

1
2 d f + e − d

1
2 e f


 ,

where c, d, e, f ∈ �.
(6) For the pair

(
V I 1

a
.ii, V Ia

)
and

(
V I 1

a
.iii, V Ia

)
:

α = A − 1
(
V I 1

a
−→ V I 1

a
.ii

)
A

(
V I 1

a
−→ V I 1

a
.iii

)
,
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where

α = A
(
V I 1

a
−→ V I 1

a
.ii

) =




0 c −c

a
1−a

d e

− a
1−a

f d + e − f




and

α = A
(
V I 1

a
−→ V I 1

a
.iii

) =




0 c′ −c′

a
1−a

d ′ e′ + f ′ − d ′

a
1+a

f ′ e′


 ,

where c, d, e, f ∈ � and similarly for prime parameter.
(7) For the pair (III.ii, I II ) and (III.iii, I II ):

α = A − 1(III −→ III.ii)A(III −→ III.iii).
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